References

  1. L. Joppa, G. Mcinerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, D. Gavaghan, and S. Emmott, “Troubling trends in scientific software use” Science (New York, N.Y.), vol. 340, pp. 814-815, 05 2013.
  2. Z. Merali, “Computational science: Error, why scientific programming does not compute”, Nature, vol. 467, no. 7317, pp. 775-777, Oct. 2010.
  3. M. De Rond and A. N. Miller, “Publish or perish: bane or boon of academic life?” Journal of management inquiry, vol. 14, no. 4, pp. 321-329, 2005.
  4. G. Miller, “A scientist’s nightmare: Software problem leads to five retractions”, Science (New York, N.Y.), vol. 314, pp. 1856-7, 01 2007.
  5. A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz, “Shining light into black boxes”, Science, vol. 336, no. 6078, pp. 159-160, 2012.
  6. M. Baker, “1,500 scientists lift the lid on reproducibility”, Nature, vol. 533, no. 7604, pp. 452—454, May 2016.
  7. C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A. M. Warren, “Measuring reproducibility in computer systems research”, Technical report, University of Arizona, Tech. Rep., 2014.
  8. N. Barnes, “Publish your computer code: it is good enough”, Nature, vol. 467, no. 7317, pp. 753-753, 2010.
  9. T. Miyakawa, “No raw data, no science: another possible source of the reproducibility crisis”, Molecular Brain, vol. 13, p. 24, 02 2020.
  10. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al., “The fair guiding principles for scientific data management and stewardship”, Scientific data, vol. 3, no. 1, pp. 1-9, 2016.
  11. N. Manola, P. Mutschke, G. Scherp, K. Tochtermann, P. Wittenburg, K. Gregory, W. Hasselbring, K. den Heijer, P. Manghi, and D. V. Uytvanck, “Implementing FAIR Data Infrastructures (Dagstuhl Perspectives Workshop 18472)”, Dagstuhl Manifestos, vol. 8, no. 1, pp. 1-34, 2020. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/13237
  12. W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropanis, “From fair research data toward fair and open research software”, it - Information Technology, vol. 62, no. 1, pp. 39-47, 2020. [Online]. Available: https://doi.org/10.1515/itit-2019-0040
  13. J. C. Carver, I. A. Cosden, C. Hill, S. Gesing, and D. S. Katz, “Sustaining research software via research software engineers and professional associations”, in 2021 IEEE/ACM International Workshop on Body of Knowledge for Software Sustainability (BoKSS), 2021, pp. 23-24.
  14. B. Penzenstadler, “Towards a definition of sustainability in and for software engineering”, in Proceedings of the 28th Annual ACM Symposium on Applied Computing, ser. SAC ‘13. New York, NY, USA: Association for Computing Machinery, 2013, pp. 1183-1185.
  15. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch, E. Nakagawa, C. Becker, and C. Carrillo S ́anchez, “Software sustainability: Research and practice from a software architecture viewpoint”, Journal of Systems and Software, 2017.
  16. D. Parnas, “Structured programming: A minor part of software engineering”, Inf. Process. Lett., vol. 88, pp. 53-58, 10 2003.
  17. F. P. Brooks, Jr., “No silver bullet: Essence and accidents of software engineering”, Computer, vol. 20, no. 4, pp. 10-19, 1987.
  18. G. Booch, “The history of software engineering”, IEEE Software, vol. 35, no. 5, pp. 108-114, 2018.
  19. N. Wirth, “A brief history of software engineering”, IEEE Annals of the History of Computing, vol. 30, no. 03, pp. 32-39, jul 2008.
  20. D. L. Parnas, “On the criteria to be used in decomposing systems into modules”, Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, December 1972.
  21. B. Liskov and S. Zilles, “Programming with abstract data types”, SIGPLAN Not., vol. 9, no. 4, pp. 50-59, Mar. 1974.
  22. E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design, ser. Yourdon Press computing series. Upper Saddle River, NJ, USA: Prentice-Hall, Inc, 1979.
  23. D. Saucez and L. Iannone, “Thoughts and recommendations from the acm sigcomm 2017 reproducibility workshop”, ACM SIGCOMM Computer Communication Review, vol. 48, no. 1, pp. 70-74, 2018.
  24. C. Boettiger, “An introduction to docker for reproducible research,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71-79, 2015.
  25. R. Sanders and D. Kelly, “Dealing with risk in scientific software development,” IEEE Software, vol. 25, no. 4, pp. 21-28, 2008.
  26. J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson, “How do scientists develop and use scientific software?” in 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering. Ieee, 2009, pp. 1-8.
  27. J. Carver, D. Heaton, L. Hochstein, and R. Bartlett, “Self-perceptions about software engineering: A survey of scientists and engineers,” Computing in Science Engineering, vol. 15, no. 1, pp. 7-11, 2013.
  28. V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull, and M. V. Zelkowitz, “Understanding the high-performance-computing community: A software engineer’s perspective,” IEEE Software, vol. 25, no. 4, pp. 29-36, 2008.
  29. S. Faulk, E. Loh, M. L. V. D. Vanter, S. Squires, and L. G. Votta, “Scientific computing’s productivity gridlock: How software engineering can help,” Computing in Science Engineering, vol. 11, no. 6, pp. 30-39, Nov 2009.
  30. G. Balaban, I. Grytten, K. D. Rand, L. Scheffer, and G. K. Sandve, “Ten simple rules for quick and dirty scientific programming,” PLOS Computational Biology, vol. 17, no. 3, pp. 1-15, 03 2021. [Online]. Available: https://doi.org/10.1371/journal.pcbi.1008549
  31. B. Moseley and P. Marks, “Out of the tar pit,” Software Practice Advancement (SPA), vol. 2006, 2006.
  32. B. K. Beaulieu-Jones and C. S. Greene, “Reproducibility of computational workflows is automated using continuous analysis,” Nature biotechnology, vol. 35, no. 4, pp. 342-346, 2017.
  33. O. Mesnard and L. A. Barba, “Reproducible workflow on a public cloud for computational fluid dynamics,” Computing in Science & Engineering, vol. 22, no. 1, pp. 102-116, 2019.
  34. D. F. Kelly, “A software chasm: Software engineering and scientific computing,” IEEE Software, vol. 24, no. 6, pp. 120-119, Nov 2007.
  35. Docker Inc. Docker. [Online]. Available: https://www.docker.com/
  36. G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers for mobility of compute,” PLOS ONE, vol. 12, no. 5, pp. 1-20, 05 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0177459
  37. K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley Professional, October 1999.